Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
MARK(s(X)) → MARK(X)
MARK(from(X)) → FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
FROM(active(X)) → FROM(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(after(X1, X2)) → MARK(X2)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2)))
AFTER(mark(X1), X2) → AFTER(X1, X2)
AFTER(active(X1), X2) → AFTER(X1, X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
AFTER(X1, active(X2)) → AFTER(X1, X2)
S(active(X)) → S(X)
S(mark(X)) → S(X)
MARK(from(X)) → MARK(X)
ACTIVE(after(s(N), cons(X, XS))) → AFTER(N, XS)
MARK(s(X)) → S(mark(X))
MARK(after(X1, X2)) → AFTER(mark(X1), mark(X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(after(X1, X2)) → MARK(X1)
ACTIVE(after(0, XS)) → MARK(XS)
AFTER(X1, mark(X2)) → AFTER(X1, X2)
ACTIVE(from(X)) → S(X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(0) → ACTIVE(0)
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
MARK(s(X)) → MARK(X)
MARK(from(X)) → FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
FROM(active(X)) → FROM(X)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(after(X1, X2)) → MARK(X2)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2)))
AFTER(mark(X1), X2) → AFTER(X1, X2)
AFTER(active(X1), X2) → AFTER(X1, X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
AFTER(X1, active(X2)) → AFTER(X1, X2)
S(active(X)) → S(X)
S(mark(X)) → S(X)
MARK(from(X)) → MARK(X)
ACTIVE(after(s(N), cons(X, XS))) → AFTER(N, XS)
MARK(s(X)) → S(mark(X))
MARK(after(X1, X2)) → AFTER(mark(X1), mark(X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(after(X1, X2)) → MARK(X1)
ACTIVE(after(0, XS)) → MARK(XS)
AFTER(X1, mark(X2)) → AFTER(X1, X2)
ACTIVE(from(X)) → S(X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(0) → ACTIVE(0)
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 9 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AFTER(mark(X1), X2) → AFTER(X1, X2)
AFTER(active(X1), X2) → AFTER(X1, X2)
AFTER(X1, mark(X2)) → AFTER(X1, X2)
AFTER(X1, active(X2)) → AFTER(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AFTER(mark(X1), X2) → AFTER(X1, X2)
AFTER(active(X1), X2) → AFTER(X1, X2)
AFTER(X1, mark(X2)) → AFTER(X1, X2)
AFTER(X1, active(X2)) → AFTER(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(after(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
ACTIVE(after(0, XS)) → MARK(XS)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.

MARK(from(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
ACTIVE(after(0, XS)) → MARK(XS)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(after(x1, x2)) = 1   
POL(cons(x1, x2)) = 0   
POL(from(x1)) = 1   
POL(mark(x1)) = 0   
POL(s(x1)) = 0   

The following usable rules [17] were oriented:

from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
after(X1, active(X2)) → after(X1, X2)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2)))
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(after(0, XS)) → MARK(XS)
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(after(X1, X2)) → ACTIVE(after(mark(X1), mark(X2))) at position [0] we obtained the following new rules:

MARK(after(x0, y1)) → ACTIVE(after(x0, mark(y1)))
MARK(after(cons(x0, x1), y1)) → ACTIVE(after(active(cons(mark(x0), x1)), mark(y1)))
MARK(after(y0, after(x0, x1))) → ACTIVE(after(mark(y0), active(after(mark(x0), mark(x1)))))
MARK(after(y0, x1)) → ACTIVE(after(mark(y0), x1))
MARK(after(s(x0), y1)) → ACTIVE(after(active(s(mark(x0))), mark(y1)))
MARK(after(y0, 0)) → ACTIVE(after(mark(y0), active(0)))
MARK(after(0, y1)) → ACTIVE(after(active(0), mark(y1)))
MARK(after(after(x0, x1), y1)) → ACTIVE(after(active(after(mark(x0), mark(x1))), mark(y1)))
MARK(after(y0, s(x0))) → ACTIVE(after(mark(y0), active(s(mark(x0)))))
MARK(after(y0, cons(x0, x1))) → ACTIVE(after(mark(y0), active(cons(mark(x0), x1))))
MARK(after(y0, from(x0))) → ACTIVE(after(mark(y0), active(from(mark(x0)))))
MARK(after(from(x0), y1)) → ACTIVE(after(active(from(mark(x0))), mark(y1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(after(x0, y1)) → ACTIVE(after(x0, mark(y1)))
MARK(from(X)) → MARK(X)
MARK(after(cons(x0, x1), y1)) → ACTIVE(after(active(cons(mark(x0), x1)), mark(y1)))
MARK(after(s(x0), y1)) → ACTIVE(after(active(s(mark(x0))), mark(y1)))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
MARK(after(after(x0, x1), y1)) → ACTIVE(after(active(after(mark(x0), mark(x1))), mark(y1)))
ACTIVE(after(0, XS)) → MARK(XS)
MARK(after(y0, cons(x0, x1))) → ACTIVE(after(mark(y0), active(cons(mark(x0), x1))))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(after(y0, after(x0, x1))) → ACTIVE(after(mark(y0), active(after(mark(x0), mark(x1)))))
MARK(after(y0, x1)) → ACTIVE(after(mark(y0), x1))
MARK(after(0, y1)) → ACTIVE(after(active(0), mark(y1)))
MARK(after(y0, 0)) → ACTIVE(after(mark(y0), active(0)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(after(s(N), cons(X, XS))) → MARK(after(N, XS))
MARK(after(from(x0), y1)) → ACTIVE(after(active(from(mark(x0))), mark(y1)))
MARK(after(y0, from(x0))) → ACTIVE(after(mark(y0), active(from(mark(x0)))))
MARK(after(y0, s(x0))) → ACTIVE(after(mark(y0), active(s(mark(x0)))))

The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(after(X1, X2)) → active(after(mark(X1), mark(X2)))
mark(0) → active(0)
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
after(mark(X1), X2) → after(X1, X2)
after(X1, mark(X2)) → after(X1, X2)
after(active(X1), X2) → after(X1, X2)
after(X1, active(X2)) → after(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.